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1. Introduction 

 

One of basic problems of the portfolio analysis that require a solution is estimation of 

portfolio weights. In this article there has been shown a way of estimation of the 

ternary portfolio values. There are also shown the formulas that enable to determine 

these values in a direct way. In the part (4) there has been executed a test to adapt the 

quadric surfaces theorem to research a kind of surfaces on which the portfolio weights 

may be situated. 

                            2. Estimation of weights situated on variance ellipse  

 

One of the basic parameters that determine a given portfolio of securities is the 

portfolio variance. Assuming that the portfolio weights fulfil the dependence:   
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    where: 

 s 2 (Rp) - the portfolio variance, 

  xi - participation of the purchase price of the i-th share in the portfolio  

        purchase price (i=1, 2, 3), 

 Si - the standard deviation of the return rate of the i-th share, 

 Sj - the standard deviation of the return rate of the j-th share, 

  rij - the correlation coefficient of the i-th share with the j-th share. 
                                                 
1 Haugen 1993. 
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In the practice the correlation coefficients are calculated from the formula2: 

where: 
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     where: 

Rit - possible return rates of the i-th share (t=1, 2, ……, M), 

Rjt - possible return rates of the j-th share (t=1, 2, ……, M), 

E(Ri) - the expected value of the return rate of the i-th share,  

E(Rj) – the expected value of the return share of the j-th share, 

M – the number of all researched return rates. 

In calculations used on the Stock Exchange we the most often use the following 

formula for the standard deviation of the i-th share3: 
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  where: 
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and Pti, 1−tiP – prices for the i- th share in the time period t and t-1 accordingly, Dti – a 

dividend of the i-th share paid in the t-th time period. 

The general form of the quadratic equation with two unknowns x1, x2 is as follows: 
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In our case with (1) we have: 
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Determining x2 from the equation (5) we receive: 
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 where: M = B2 – AC, N = BE – CD, P = E2 – CF. Calculating the discriminant of the 

trinomial square under the radical we receive: 

                                                 
2 Tarczynski 1997. 
3 Ibidem. 
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or in the other way:           
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As it can be proved, a kind of the curve we receive in case of (7) depends on the 

number M and the determinant Q, it means when, for example, M < 0 and Q > 0 we 

deal with the real ellipse for  111 x̂xx ≤≤  , where   11 ˆ, xx  - are the square roots of the 

trinomial square PNxMx ++ 1
2

1 . Similarly  M < 0 and Q < 0 give the imaginary 

ellipses. However in case when M > 0 and Q > 0 we receive a family of real 

hyperbolas, and for  example M = 0  and  0>Q  give  a family  of  real  parabolas. Of 

course, we have not specified all the cases here. Let us try, basing on the equation (7) 

and the above, answer the question what conditions have to be fulfilled by the weights 

xi (1 = i = 2) of the portfolio shares built on the basis of three companies, if we are 

anxious to have the weights situated on the real ellipse.   From this that 

 Q > 0 and M < 0 we receive Mx1
2 + 2Nx1 + P = 0 in case when: 
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  the roots of the trinomial square Mx1
2 + 2Nx1 + P. 

As it is easy to see, the straight line  
C
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2  is the symmetry axis of the 

ellipse (7). In case when B = 0, the biggest value x2 max that can be received by the 

weight of shares of the second company included in the portfolio equals to: 
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. Because of the symmetry, the least value of x2 equals 

to accordingly: 
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By the force of (10 - 11) we receive: 
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The above shown way of determination of the biggest and least values of the weight 

x2 is, of course, referred to only to the case when the symmetry axis of the ellipse is 

parallel to the x1 axis. When we are anxious to find the least and the biggest values of 

the weight x2, we have to use the differential calculus. 
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4 Fichtenholz 1969. 
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The equality  02 =′x)   takes place when: 
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Having both sides of the last equation squared and having the square roots of the 

trinomial square determined, we receive after necessary calculations:   
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 The values of received square roots have to, of course, fulfil the dependence (9) and 

(12) and after calculation of these roots they have to be substituted to the equation 

(14), just to be sure whether, by chance, we have not received the “wild” square roots 

resulting from squaring the equality (14). If it appears that one of the square roots 

fulfils the equation (14), it is necessary to determine the second derivative of the 

weight x2 and check its sign for this x1, which is the square root of the first 

derivative ′
2x . We have the maximum if the second derivative is negative and 

minimum when the second derivative is positive – the function x2 has the local 

minimum5. Using the equality (13) we receive, having the second derivative 

calculated: 
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To finish looking for the biggest and the least values of the weight x2 situated on the 

ellipse of the variance given by the equality (7) it is also necessary to determine the 

extreme of the function: 
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It is easy to notice, that the first derivative can be equal to 0, it means 02 =′x(  for the 

square roots given by the equation (15). Similarly, after calculations analogous to the 

above we receive: 

                                                 
5 Ibidem. 
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This is also necessary to check, which will be in this case the sign of the second 

derivative in the points, in which the first derivative equals to 0. Recapitulating, in the 

general case the weight x2 fulfils the double equality of the form: 
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In this way we have received the following three weights of the considered portfolio 

that meet the extreme values of weights x1 and x2: 
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Finding these four points gives a pretty well idea about the position of the real ellipse 

of the portfo lio variance. Dependences (9), (19) determine in the general way the 

range of changeability of the weights x1 and x2 and at the same time also x3. 



 7 

The other interesting problem is determination of the weights of the given portfolio, 

which are situated on the real ellipse (the popular name is isoellipse), which meets a 

certain variance and the constant value of the weight, for example x2. To fulfil it, it is 

necessary to solve the equation: 
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2 σ . 

After detail calculations we receive the square roots of the equation ( 21 ) of the form: 
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where we can choose p only from the interval of forms (19), whilst x1 has to fulfil the  

dependence ( 9 ). 

                                              3. Empirical example    

 

On the basis of two years long week data counted from January 1994 to January 1996, 

there have been received, basing on the formulas (2 - 4), the following data referred to 

Elektrim, BRE and Universal companies, which are quoted on the Warsaw Stock 

Exchange: 46,0  ,62,0  ,69,0  ,1528,0  ,081,0  ,104,0 231312321 ====== rrrSSS . 

Let us also assume that s 2(Rp) = 0,1. Then after calculations of the coefficients A, B, 

C, D, E, F of the equation ( 5 ) we receive the following results: A = 0,014;  

B = 0,014, C = 0,019; D = -0,013; E = -0,018; F = -0,077;  and  

M = 010  7 -52 <⋅−=− ACB ; N = BE – CD = -0,000005, 001787,02 =−= CFEP ,  

                                         0000000508,0
077,0018,0013,0
018,0019,0014,0

001,000108,000108,0

>=
−−−
−

−−

=Q . 

As Q > 0 and B2 – AC < 0 we can find that the weights x1 and x2, which correspond 

accordingly  Elektrim and BRE companies, are situated on the real ellipse with the 

equation: 

              0,014x1
2 + 0,028x1x2 + 0,019x2

2 – 0,026x1 – 0,036x2 – 0,077 = 0. 

Wanting to calculate generally at which values of the variances the weights of 

Elektrim and BRE companies are situated on the real ellipse, we have to solve the 

inequality:   
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that takes place at s 2(Rp) = k > 0,005925 and at the standard deviation  

07697,0>k .At the same time, using the above received results and dependences 

(9), (12) and (13 ) we receive  using  programmme  Mathcad  2001 the portfolio 

weights on the level: 

162,5−  02,51 ≤≤ x  , 751,42 =x  , 411,13 =x  , 751,2ˆ2 −=x  , 268,1ˆ3 −=x  , 
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minimum                            066,3)092,3( min22 −== xx (( .   

By the force of (19) we receive : 

               }066,5  ;751,4  ;751,2max{}751,4  ;751,2  ;066,3min{ 2 −≤≤−− x . 

 So     -3,066 = x2 = 5,066. 

Finding the detail estimation of the weights of particular companies in the portfolio 

facilitates an investor to find more convenient strategy of investing. Knowing in 

detail, in which limits the weights are changed, the investor can invest using both a 

short sale and without the short sale at the assumption that the variance of expected 

return rate equals to 0,1. Wanting to receive  the detail estimations of three weights at 

the assumption that we know the value of the weight x2 it is necessary to use the 

formula (20) taking into consideration that the sum of all weights gives 1. 

 

     4. Researching of kind of surface on which weights of quaternary portfolio are   

                                                     situated. 

 

Let us assume now that we are going to invest in shares of four companies. In this 

case the portfolio variance has the form: 
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Equivalently, the equation (23) can be written down in the following form:                   
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Let the companies considered in the portfolio be: (1) Elektrim, (2) BRE, (3) 

Universal, (4) Efekt. Then the standard deviations and correlation coefficients are as 

follows: 

46,0  ;62,0  ;62,0  ;69,0  ;15,0  ;1528,0  ;081,0  ;104,0 231413124321 ======== rrrrSSSS ;

75,0  ;57,0 3424 == rr . 

To research, on which surface the weights of the first three companies are situated, the 

coefficients present in the equation (24) have to be determined at the very beginning. 

After calculations the coefficients given with dependences (25) have the following 

form: 

    A = 0,014; B = 0,012; C = 0,0054; D = -0,013; E = 0,01521; F = 0,021; G = -0,015;  

    H = 0,011;  I= -0,0053; J = -0,0775. 

at the portfolio variance assumed on the level s 2(Rp) = 0,1. 

As a result we have received the surface given with the equation: 

−+−++−++ 2
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0,0106 00775,03 =−x . 
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The surface of this type is a quadric surface. To research a kind of this quadric surface 

we have to consider signs of the following expressions 6: 

                              (26)                                             .            ,                                        
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In our case, using the Mathcad 2001 Professional program, the following results were 

received: W= - 0,000003137< 0, V = 0,0000002813 > 0, W1 = 0,04021 > 0,  

W2 = - 0,000799 < 0 when: WW1 = - 0,00000321 < 0. Because V > 0 and W2 < 0,  

W > 0, WW1 < 0, the Elektrim, BRE and Universal weights are situated on the surface 

of the single hull hyperboloid. Please note, that solving the inequality: 
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depending on the parameter k = s 2(Rp) we receive the interval for the portfolio 

variance, at which the weights are situated on the single hull hyperboloid. In the 

calculated example, starting from k = s 2(Rp) > 0,01086131, the weights will be 

situated on the surface mentioned. 

Similarly for 0 < k = s2(Rp) < 0,01086131 the weights will be situated on the quadric 

surface with the name: double hull hyperboloid, because the determinant V < 0. 

Assuming the parameter, for example x3 = p, the equation (24) can be converted to the 

form: 

0,014x1
2 + ⋅2 0,012x1x2 + 0,01521x2

2 + 2(0,0054p – 0,013)x1 + ⋅2 (0,021p – 0,015)x2 

+ 0,011p2 – 0,0106p – 0,0775 = 0 

Because of the fact that M = 0,0122 – 0,014(0,01521) = - 0,00006894 < 0, the 

intersections of the hyperboloid are the real ellipses. Substituting the received 

coefficient of the last equation to the dependence (16), we receive after calculations 

that Q > 0 if and only if: 

         1,9089058622 ⋅4 10-7p2 – 1,051753248 ⋅0 10-7p + 3,883624056 ⋅0 10-7 > 0 

                                                 
6 Stark 1958. 
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what, as it can be easy seen, takes place for the arbitrary value of the parameter p and 

at the same time also for the weight x3. Assuming now x2 = p =  constant for the 

parameter (it means the weight level of BRE company) we receive: 

0,014x1
2 + ⋅2 0,00549x1x3 + ⋅2 (0,012p + ⋅2 (0,021p – 0,00515)x3 – (-0,01521p2 + 

0,03p + 0,0775) = 0. 

In this case              M = 0,005492 – 0,01 ⋅4 0,011 = -0,0001238 < 0. 

Whilst 

0
)0775,0030,001521,0(00531,0021,0013,0012,0

00531,0021,0011,000549,0

)013,0012,0(011,04011,000549,04011,0014,04

2
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++−−−−
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−⋅⋅−⋅⋅−⋅⋅−

=
pppp

p

p

Q  

       1,367137 ⋅6 10-7p2 + 3,7792914 ⋅4 10-4p + 4,8817728 ⋅3 10-7 > 0 

what takes place for each value of the parameter p. So the intersections of considered 

single hull hyperboloid with planes vertical to the axis x2 are the real ellipses and it is 

possible, estimating the weight shares of Elektrim and Universal in the portfolio, to 

use this information, which refer to the real ellipse. At the same time, fixing the 

portfolio variance level and the constant value of the weight x2, it means participation 

of BRE shares, we can estimate in detail how Elektrim, Uniwersal and Efekt weights 

change, knowing additionally that ∑
=

=
4

1

1
i

ix . 

                                                 5. Conclusions  

 

As it can be seen, basing on derived formulas (referred to the ellipse variance) we can 

relatively easy estimate the weights values of the ternary portfolio assuming that the 

sum of weights gives 1. However, at the constant portfolio variance (assumed in a 

certain interval) and fixed value of one of weights – as it is seen in the example (on 

the basis of the quadric surface theorem) the remaining portfolio weights are more 

than once situated on a certain ellipse of variances with the assumption that the sum of 

the portfolio weights gives 1, what allows to estimate also the weights of the 

quaternary portfolio . 
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