
A heuristic approach for a special

pick-up-and-delivery problem

Harald Mumm

April 30, 2007

Abstract

The task to find an optimal solution for our pick-up-and-delivery prob-
lem is NP-complete. Our heuristic approach is based on optimal solutions
for vehicle routing problems with split delivery. With these solutions we
construct pick-up’s for those stages, where the trucks are not full. In this
kind of computation the costs of transport depends on the sequence of
computation for all factories. We are looking for the best sequence.
In further papers we want also to solve the problem of bring-back-tours.
Every transport of goods in little plastic containers implies a transposed
demand matrix to bring back the empties. From monday to thursday only
those trucks, which are not full are used for this bring-back-tours. On fri-
day all empties of the week are to bring back to the production factories.
If it is not necessary to use the own trucks of the company, we only use
values of demands less then the truck capacity.

1



1. Introduction

In [2] we used an approach from [1] for a decision support tool in an ap-
plication domain with delivery problems. In our paper we set out to take
this approach for a more general task: Delivery-and-Pick-Up (in literature
often used as pick-up-and-delivery) in the special case, that every location
has to send and receive some goods.

Delivery-and-Pick-Up is always required, when the production program
of a company is carried out in more than one factory and when in each of
these factories (which have a certain and exclusive production program)
all goods must be permanently available, although not all of these goods
were produced there.

2. The Problem

A certain company operates with six factories in six different locations.
All distances between two locations are described in a distances matrix
like this:

Figure 1: An example for a distance-matrix

distances(km) =





















0 88 303 170 357 353
88 0 339 123 335 305
303 339 0 302 521 178
170 123 302 0 249 234
357 335 521 249 0 453
353 305 178 234 453 0





















We assume that the triangle inequality is valid.

Due to the fact that not all factories have the identical production pro-
gram, every day an exchange of goods has to take place to make sure that
all products are available in each factory. From each factory certain goods,
which are not produced at the other five locations have to be brought there.
As an example we present you the following matrix, that depicts the de-
mands of each factory in relation to the others:

From the first location a set of 112 units has to be delivered to the
second location. From the second location the set of 86 units shall be
transported to the factory at the first location and so on. Note, that one
truck has a 36 unit capacity.

2



Figure 2: An example for demands

demands =





















0 112 43 21 70 20
86 0 40 34 50 45
10 33 0 118 28 74
44 0 39 0 39 54
95 0 38 31 0 43
20 41 31 51 23 0





















3. A Heuristic Algorithm for a special

Pick-up-and-delivery Problem

Our algorithm is based on the optimal solution described in [2] regading
one factory as a depot and the other factories as customers.

Since the truck capacity is not fully used anymoreafter its first stage,
it can again pick up goods to its next station, which functions again as
depot. But we do not use this method transitively.

We use the idea, that the costs in whole depends on the order of simple
calculations for all six factories with the algorithm described in [2]. We are
looking for the best possible order.

(This does not mean, that the trucks have to depart at different times.
If the calculation is ready all trucks at all six locations can start at the
same time for example in the morning at 6 o’clock.)

The data type for a solution described in [2] is named SolutionOfOneVrpsd.
It consists of many schedules for all used trucks. The data type for one
schedules is named SchedulerOfOneRoute. It contains all stages (Etap-
pen,Staionen) for one truck. One stage is described with the properties:

depotnumber , the number of the location, from where the truck delivers
some goods to other locations,

fromnumber , the number of the location of the last stop

tonumber , the number of the following location of one stage

freecap , the free capacity of the truck at this stage.

onBoard , the real set of goods (in number of pallets) on the truck

deliveryset , the set of goods on the truck, which have to stay at the
location with tonumber ,

truckcap , all trucks have a fixed capacity

When the truck reaches it first destination, it delivers some goods. Con-
sequently, it is not fully loaded anymore, that means: freecap >0.

3



Now it can pick up a certain amount of goods depending on the next
location’s needs. In this case the location with the certain number, stored
in the variable fromnumber plays the role of the depot for the location with
the number stored in the variable tonumber.

Now the whole pseudocode for the used data types is presented:

Type PickUpAndDeliverySolution = Array[1..maxFactory] of

SolutionOfOneVrpsd

Type SolutionOfOneVrpsd= Array[1..numberOfTrucks] of

ScheduleOfOneRoute

Type ScheduleOfOneRoute = Array[1..numberOfStages] of

Stage

Type Stage= Record (

depotnumber: 1..maxFactory

fromnumber : 1..maxFactory

tonumber : 1..maxFactory

freecap : unsignedInt

onBoard : unsignedInt

delivery : unsignedInt

truckcap : unsignedInt)

Type AllDemands= Array[1..maxFactory] of Demands

Type Demands = Array[1..maxFactory] of OneDemand

Type OneDemand = unsignedInt

Type Distances = Array[1..maxFactory] of Array[1..maxFactory]

of unsignedInt

Now we show the code for the heuristic. The whole calculation runs in
the following function. scan .. means a loop over the six values 1,2,3,4,5
and 6. Because in the function solveSixVrpsp there are pick-ups the
matrix of demands has to be recover for the following calculation.

Function CostsPickUpAndDelivery6Factorys(

-> ad: Demands

-> di: Distances

-> tc: TruckCap): Costs

Variable adt: Demands

Variable minimumCosts: float

Variable result: SolutionOfOneVrpsd

Beginn

adt = ad

4



mimimumCosts:= bigNumber

scan i1;scan i2;scan i3;scan i4;scan i5;scan i6

Begin

if (allUnequal(i1,i2,i3,i4,i5,i6)) then

Begin

costs= solveSixVrpsp(ad,di,tc,i1,i2,i3,i4,i5,i6,result );

recover(ad);

if (costs<minimumCosts) then minimumCosts:= costs

End

CostsPickUpAndDelivery := minimumCosts

End

This function needs another function solveSixVrpsp, which calculates
six solutions of six vehicle routing problems with split delivery (vrpsp) . In
such solutions we insert certain pick-ups, when the truck is not full. These
pick-ups reduces the demands for the calculation of the next vrpsp.

Funktion solveSixVrpsp(-> ad: AllDemands

-> di: Distances

-> tc: TruckCap

-> i1,i2,i3,i4,i5,i6: unsignedInt

): unsignedInt

Variable sov: SolutionOfOneVrpsd

Begin

costs1:=solveOneVrpsp(ad,di,tc,i1,sov)

//PickUps reduces the demands in ad

r1= PickUp(ad,di,tc,sov);

costs2:=solveOneVrpsp(ad,di,tc,i2,sov)

r2= PickUp(ad,di,tc,sov);

costs3:=solveOneVrpsp(ad,di,tc,i3,sov)

r3= PickUp(ad,di,tc,sov);

costs4:=solveOneVrpsp(ad,di,tc,i4,sov)

r4= PickUp(ad,di,tc,sov);

costs5:=solveOneVrpsp(ad,di,tc,i5,sov)

r3= PickUp(ad,di,tc,sov);

costs6:=solveOneVrpsp(ad,di,tc,i6,sov)

r4= PickUp(ad,di,tc,sov);

5



return costs1+costs2+costs3+costs4+costs5+costs6

End

If a truck is not full it can pick-up some goods for its next destination.
Perhaps it can pick-up the whole demand of its next destination.

Function PickUp(<->ad : AllDemands

->sov: SolutionOfOneVrpsd): unsignedInt

Variable result: insignedInt;

Variable soor : SchedulerOfOneRoute

Variable result: unsignedInt

Begin

result := 0

for (int i1:=0; i1< max1;i1++)

Begin

soor = sov[i1]

for (int i2:=0; i2< max2 ;i2++)

Begin

st = soor[i2]

if (st.fromnumber != st.depotnumber

and st.freecap >0

and ad[st.fromnumber][st.tonumber] > 0) then

if (ad[st.fromnumber][st.tonumber]<= st.freecap)

then Beginn

ad[st.fromnumber][st.tonumber]:=0

result := result + ad[st.fromnumber][st.tonumber]

End

else Begin

ad[st.fromnumber][st.tonumber]:=

ad[st.fromnumber][st.tonumber] - st.freecap

result := result + st.freecap

End

End

End

PickUp := result

End

4. An example for the optimal solution

We assume that the truck capacity is 100 and the matrix of demands looks
symmetrically like this:

6



demands =



















− 100 100 100 100 100
100 − 200 200 200 200
100 200 − 300 300 300
100 200 300 − 400 400
100 200 300 400 − 500
100 200 300 400 500 −



















In this case our algorithm produces the optimal solution with the lowest
costs for the company:

optimalcosts = 2 ∗

∑

6

i=2 distances[1][i] + 4 ∗

∑

6

i=3 distances[2][i] +

6 ∗

∑

6

i=4 distances[3][i] +

+8 ∗

∑

6

i=5 distances[4][i] + 10 ∗ distances[5][6] = 21350km

5. Numerical Results

For the data above the best of the 720 possible orders of calculation is: 6,
5, 4, 1, 2, 3 with costs of 14369 km. That means, we have to compute at
first the delivery-problem for the sixth factory, followed by the fifth, the
fourth and so on. This result reduces the costs to 84% of the worst order
costs.

In the following table you can also see the improvement of our solution
respectively the number of trucks assuming that one truck has a 36 unit
capacity.

Table 1: Improvement of number of trucks for demands in figure 2

factory no. sum of units # trucks theor. # trucks heur.
6 166 5 5
5 207 6 5
4 176 5 3
1 266 8 4
2 255 8 4
3 263 8 2

1333 38 19

For 1333 units you theoretical need 38 trucks with a 36 unit capacity.
To solve the mentioned pick up and delivery problem, we merely have to

7



use 19 trucks.

6. Conclusions

Pick-Up-And-Delivery Problems with 6 locations are too large to be solved
optimally. By our way it is possible to find a good solution in less than
10 minutes computing time. But we don’t know how good our solution is.
Therefore, the costs of the solution, produced by our algorithm needs to
be compared with the cost of an optimal solution. This is the task for the
future (see [3]).

Additionally, we have to solve the problem that our goods are trans-
ported in little plastic containers. One euro-pallet has for example the
capacity of 64 plastic containers. At the end of the week all plastic con-
tainers must be at their origin.

If it is not necessary to use the own trucks of the company, we can
calculate a new matrix of demands with the help of the modulo operation.
We obtain the values of the new matrix as the rest by division the origin
values through the truck capacity.

References

[1] Epelman, Marina and other: A Shortest Path Approach to the
Multiple-Vehicle Routing Problem with Split Pick-Ups: Transporta-
tion Research, Part B 40(4):265-284, 2006.

[2] Mumm, Harald, Roeck, Hans: Developing operation and decision sup-
port tools for a split-delivery vehicle routing application domain ,
Conference Procedeedings BIR2006, October the 6th 2006, Kaunas,
Lithuania

[3] Vazirani, ViJay: Approximation Algorithms, Springer-Verlag, 2001 .

About the author

Prof. Dr. rer. nat. Harald Mumm
Hochschule Wismar
University of Technology, Business and Design
Wismar Business School
Phillipp-Mueller-Strasse
Postbox 1210
23952 Wismar
Germany
Telefon: ++49 / (0)3841 / 753 450
Fax: ++49 / (0)3841 / 753 131
E-mail: harald.mumm@wi.hs-wismar.de

8


